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Abstract

We analyze the stability of the vacuum and the electroweak phase transition in
the NMSSM close to the Peccei-Quinn symmetry limit. This limit contains light
Dark Matter (DM) particles with a mass significantly smaller than the weak scale
and also light CP-even and CP-odd Higgs bosons. Such light particles lead to a
consistent relic density and facilitate a large spin-independent direct DM detection
cross section, that may accommodate the recently reported signatures at the DAMA
and CoGeNT experiments. Studying the one-loop effective potential at finite tem-
perature, we show that when the lightest CP-even Higgs mass is of the order of a
few GeV, the electroweak phase transition tends to become first order and strong.
The inverse relationship between the direct-detection cross-section and the light-
est CP-even Higgs mass implies that a cross-section of the order of 10−41 cm2 is
correlated with a strong first order phase transition.
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1 Introduction

The Standard Model (SM) agrees remarkably well with all the experimental observables
measured presently. However, the experimental tests of the SM have so far been limited to
the gauge sector. Far less is known about the Higgs sector responsible for the generation of
masses of all SM particles. The smallness of the electroweak symmetry breaking (EWSB)
scale compared to the Planck scale suggests new physics at the weak scale. Among the
different possibilities that have been studied in the literature, supersymmetry (SUSY)
is one of the most compelling ones [1]. In a supersymmetric framework the stability of
the Higgs mass parameter under quantum corrections can be ensured. In minimal ex-
tensions, the SM-like Higgs is naturally light [2]–[5], and the corrections to electroweak
precision and flavor observables tend to be small, leading to good agreement with ob-
servations. Additionally, low energy supersymmetry leads to the unification of couplings
at large energies and provides a natural DM candidate, namely the lightest neutralino.
Moreover, supersymmetric extensions also allows the implementation of the mechanism of
electroweak baryogenesis for the generation of the matter-antimatter asymmetry [6]–[9].

The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) [10]
preserves all of the above properties, while additionally containing a richer Higgs and
neutralino spectrum. This may have an important impact on low energy observables. In
particular, if the lighter neutralinos and neutral Higgs bosons are mainly singlets, they
would be predominantly produced in association with heavier Higgs bosons or from the
cascade decay of other supersymmetric particles, and therefore can easily avoid current
experimental constraints.

Recently the DAMA, CoGeNT and CRESST experiments [11, 12, 13, 14, 15, 16] have
claimed signatures that may be consistent with light DM particles with a mass of about
10 GeV and cross sections of about a few times 10−41 cm2. If this particle is identified
with a light neutralino, the large cross section necessary to achieve compatibility with
these experiments in the MSSM can only be obtained in the very large tan β limit and
relatively light CP-odd Higgs mass, mA. However, this region of parameters is severely
constrained by non-standard Higgs searches and flavor physics experiments, and is there-
fore disfavored [17]–[22].

The NMSSM also provides the possibility of a light neutralino. However, unlike the
MSSM case, this neutralino is mostly singlino-like, with a direct dark matter detection
cross section mediated predominantly via the lightest CP-even scalar, which is mainly re-
lated to the real component of the additional singlet. The proper relic density may also be
obtained, with the annihilation of the neutralino dominated by either the light CP-even or
the CP-odd Higgs boson, the later also having a large singlet component. In the NMSSM,
the light spectrum necessary to explain the above DM is highly constrained in generic
regions of parameter space [20]–[22], but can be obtained in the near Peccei-Quinn (PQ)
symmetry limit [23]–[24]. Masses of the lightest CP-even Higgs boson of about a few GeV
lead to a large spin independent direct dark matter detection cross section, σSI , while the
proper relic density may be obtained via close to resonant annihilation mediated by the
CP-odd Higgs. The model was shown to be consistent with all experimental constraints,
and provides a new paradigm for the study of the NMSSM phenomenology [24].

With these considerations in mind, it becomes important to understand if the mech-
anism of electroweak baryogenesis may be accommodated within this framework. In this
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work, we do not analyze the CP-violating sources [25]–[35],[36], instead, we concentrate
on the conditions necessary for the preservation of the baryon asymmetry, associated with
a strong first order phase transition [6]. Previous works have shown that large values of
the trilinear Higgs coupling in the NMSSM tend to induce a strong phase transition [37]–
[44]. However, for sufficiently low values of the singlet mass parameter, instabilities in
the effective potential seem to occur that tend to prevent the successful realization of this
scenario [41].

In this article, we show that near the PQ-symmetry limit of the NMSSM, a global
physical minimum may naturally be found for either relatively heavy or light singlets.
Moreover, in the light singlet case, one obtains a small lightest CP-even Higgs mass which
leads to a strong first order phase transition, providing a correlation between large dark
matter direct detection cross section and a strong first order phase transition. Light SM-
like CP-even Higgs bosons, are helpful in strengthening the first order phase transition
and in avoiding possible instabilities.

The article is organized as follows: In section 2 we discuss the properties of the NMSSM
near the PQ symmetry limit. In section 3 we look at the EWSB vacuum and the elec-
troweak phase transition necessary for baryogenesis. We further study the EWSB and
the phase transition in a Simplified Model and demonstrate that a range of small soft
supersymmetry breaking masses for the singlet field leads to both EWSB and a suffi-
ciently strong first order phase transition to the physical vacuum, preserving the baryon
asymmetry. In section 4 we present a numerical study of the full model. In section 5 we
discuss the phenomenological consequences. We reserve section 6 for our conclusions.

2 The near Peccei-Quinn symmetry limit of the NMSSM

We concentrate on the standard NMSSM framework, with a Higgs super-potential

W = λSHuHd +
1

3
κS3. (2.1)

The neutral Higgs low-energy effective potential contains the following dominant compo-
nents

VH = m2
Hu|Hu|2 +m2

Hd
|Hd|2 + λ2|HuHd|2 +

(g2
1 + g2

2)

8

(
H2
u −H2

d

)2
. (2.2)

The singlet dependent scalar potential terms are given by

VS = m2
s|S|2 + λ2|S|2

(
|Hu|2 + |Hd|2

)
+ κ2|S|4

+

(
κλS2H∗uH

∗
d − λAλHuHdS +

1

3
κAκS

3 + h.c

)
. (2.3)

Here Hd, Hu and S denote the neutral Higgs bosons corresponding to Hd, Hu and S
respectively. Following reference [24], we concentrate on the near PQ symmetry limit of
this model, namely κ� λ . 0.2. For κ = 0, the PQ symmetry is realized.

A small κ denotes an explicit breaking of the PQ symmetry, otherwise spontaneously
broken by the presence of a singlet vacuum expectation value (vev), 〈S〉 = S0 ' µ/λ.
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Hence the CP-odd scalar, a1, behaves as a pseudo Goldstone boson, which consequently
acquires a small mass

m2
a1
' −3

κ

λ
Aκµ . (2.4)

The phenomenology of a light a1 has been thoroughly studied in the R-symmetry limit [45,
46].

A light neutralino also appears in this region of parameters making a clear distinction
with the scenario studied previously in Refs. [45, 46]. The lightest neutralino is mainly
singlino, with a mass given by

mχ1 ' λ2v
2

µ
sin 2β + 2

κ

λ
µ, (2.5)

where v = 174 GeV and tan β ≡ 〈Hu〉/〈Hd〉. As was pointed out in Ref. [24], for λ . 0.2,
tan β ∼ 10, µ ∼ few hundred GeV and κ/λ on the order of a few percent, mχ1 is of order
10 GeV.

Another important effect is associated with the heavy non-standard Higgs bosons in
this scenario. For moderate values of tan β, the minimization of the effective potential
determines that, near the PQ symmetry limit

m2
Hd
' A2

λ , (2.6)

Aλ ' µ tan β . (2.7)

Since µ is of the order of a few hundred GeV, this creates a large hierarchical separation
amongst the heaviest CP-even, CP-odd and charged Higgs bosons (which acquire masses
of order of a few TeV for tan β of order 10), the second lightest CP-even Higgs (with
mass close to 120 GeV), and the lightest CP-even and CP-odd Higgs bosons (with masses
about 10 GeV).

2.1 Loop Corrections

Loop corrections are very important in defining the CP-even spectrum. At large values
of tan β, they lift the mass of the second lightest CP-even Higgs (which has SM-like
properties) above mZ , an effect that has a logarithmic dependence on the third generation
squark spectrum. Specifically looking at the corrections induced to the SM-like Higgs
quartic coupling:

∆VH4 '

{
∆λ̃t̃

2
− 3

16π2

m4
t

v4
u

[
log

(
H2
u

v2
u

)
− 3

2

]}
H4
u , (2.8)

∆λ̃t̃ =
3m4

t

8π2v4

[
log

(
m2
t̃

m2
t

)
+
A2
t

m2
t̃

(
1− A2

t

12m2
t̃

)]
, (2.9)

where mt̃ is the characteristic mass of the scalar partners of the top-quark, At is the stop
mixing parameter and mt = ytvu is the running top-quark mass at the weak scale. ∆λ̃t̃,
comes from the stop one-loop induced corrections, and the second term in ∆VH4 comes
from the top induced corrections in the DR scheme. We have assumed that the stop
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supersymmetry breaking masses are larger than the weak scale, so the stop induced field
dependent logarithmic term is suppressed. This leads to just an effective correction to
the Hu quartic coupling, which depends logarithmically on the stop mass scale.

Hence, the loop-corrected mass of the second lightest (SM-like) Higgs boson, mh2 , for
moderate or large values of tan β (vu ' v), is given by [2]–[4]

m2
h2
' m2

Z + 3
m4
t

4π2v2

[
log

(
m2
t̃

m2
t

)
+
A2
t

m2
t̃

(
1− A2

t

12m2
t̃

)]
, (2.10)

where the first term is the tree-level contribution and the second term proceeds from the
stop loop corrections (2∆λ̃t̃v

2). The corrections induced by the mixing with the singlet
sector become negligible in the region of parameters under study. In our numerical work,
we will also always include the one-loop corrections induced by the gauge sector, which,
however, lead to very small corrections to the Higgs mass parameters.

In the effective S-scalar potential, the large masses of the non-standard Higgs bosons
induce a large correction. In particular, the S-quartic coupling dependent component of
the potential at the weak scale acquires a contribution which is approximately given by

∆VS4 ' λ4

16π2
S4

(
1 +

A2
λ

m2
Hd

)2

log

(
m2
Hd

m2
t

)
− λ4

8π2
S4

[
log

(
λ2S2

m2
t

)
− 3

2

]
. (2.11)

This implies that in the PQ-limit, the dominant contribution to the S-quartic coupling
may come from loop-corrections, rather than from tree-level contributions. This prop-
erty has important consequences for the CP-even Higgs spectrum. Defining the small
parameter,

ε ≡ λµ

mh2

(
Aλ

µ tan β
− 1

)
∼ O(10−2) , (2.12)

it is easy to show that the lightest CP-even scalar acquires a mass

m2
h1
' −4v2ε2 +

4v2λ2

tan2 β
+
κ

λ
Aκµ+ 4

κ2

λ2
µ2 +

λ2µ2

2π2
log

(
µ2

m2
t

tan4 β

)
, (2.13)

where the last term proceeds from the one-loop corrections.

3 Vacuum Stability and Phase Transition

3.1 Zero Temperature Properties

The vacuum at T = 0 needs to be analyzed to see whether this model gives rise to a
realistic EWSB scenario. Hence we need to study the structure of the effective potential
given in Eqs. (2.3) and (2.2) including all relevant one-loop effects:

V = VS + VH . (3.14)

The properties of the NMSSM that we are interested in are controlled by the param-
eter set: {λ,Aλ, κ, Aκ, tan β,∆λ̃t̃}, and the soft masses: {m2

s,m
2
Hd
,m2

Hu
}. The physical

requirement of the EWSB extremum to be at v =
√
|〈Hu〉|2 + |〈Hd〉|2 ' 174 GeV forces
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m2
Hu

and m2
Hd

to very specific values for each point in the parameter set. The further re-
quirement that the EWSB extremum must be a minimum and in fact the global minimum,
constrains m2

s to be within a well defined range.
Assuming no spontaneous breakdown of the CP symmetry, the simplest way of ensur-

ing that the EWSB extremum is indeed a minimum is to look at the Hessian of the effective
potential, namely the CP-even Higgs mass matrix, ensuring that all the eigenvalues are
positive,

M ij
H =

1

2

∂2V

∂xi∂xj
, (3.15)

where xi represent the real components of the scalar potential and the second derivative
must be evaluated at the corresponding extreme values.

We demand that the physical vacuum be associated with the global minimum and
compute physical masses from the eigenvalues of the mass matrix, always using the one-
loop effective potential. Since all couplings affecting the singlet sector are weak, we do
not expect two loop corrections to modify the lightest CP-even and CP-odd Higgs masses
in a relevant way. The SM-like Higgs mass, which depends on the third generation squark
spectrum at the one-loop level, as shown in Eq. (2.10), is moderately modified by two-
loop corrections induced by QCD and third generation Yukawa couplings [2]–[5]. These
corrections amount effectively to a modification of the effective ∆λ̃t̃ coupling, which we
shall fix in order to acquire h2 masses below 130 GeV, corresponding to the maximum
value that may be achieved for a third generation squark spectrum of order 1 TeV. We
reserve the detailed study of higher-loop effects at zero and finite temperature to a future
investigation.

3.2 Electroweak Phase Transition at Finite Temperature

The realization of the mechanism of electroweak baryogenesis, needed to generate the
matter-antimatter asymmetry, demands the presence of a strong first order electroweak
phase transition. In order to determine if such a transition occurs in the NMSSM, we
need to study the temperature evolution of the potential.

The requirement of a strong first order phase transition is that φc > Tc, where Tc is the
temperature at which the potential at the non-trivial minimum is equal to the value at
the trivial minimum and φc is the projection of the Higgs vev in the direction of the Higgs
doublets [6] [7] at that temperature. If a one-step phase transition is required, the finite
temperature minimum, φc, evolving to the physical minimum (v = 174 GeV) at T = 0
should be the global minimum at the critical temperature, and should develop first as the
Universe cools down. If this is not the case, then we face the situation of a non-physical
metastable vacuum developing first, where the Universe may be trapped for long periods
of time, or a metastable physical vacuum. To analyze either of these situations, one would
have to study the tunneling rates between vacua. This is beyond the scope of this work,
and hence we will concentrate on regions of parameter space where a one step electroweak
phase transition is realized, and the physical vacuum is stable.

In general, the critical temperature, Tc, turns out to be a few tens of GeV, and in
order to compute the Higgs effective potential at finite temperature, the high temperature
expansion is not a priori justified. Therefore, we use the exact temperature dependent one-
loop contribution to the potential, which for a particle of mass m ≡ m(φ) at temperature
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T is proportional to [47]:

V (T,m,±1) = ∓ T 4

2π2

∫ ∞
0

x2 log(1± e−
√
x2+m2

T2 )dx, (3.16)

where ±1 in the argument of V stands for either fermions or bosons.
We include the one-loop finite temperature contribution associated with the top-quark,

the gauge bosons and the Higgsino fields, which provide the most important temperature
dependent corrections to the effective potential:

VT = 8V (T, λS,+1) + 12V (T,
mt

vu
Hu,+1) + 3V (T,

mZ

v

√
H2
u +H2

d ,−1)

+ 6V (T,
mW

v

√
H2
u +H2

d ,−1). (3.17)

Light Higgs bosons and neutralinos have relatively small couplings to the Higgs and
singlet fields and therefore their finite temperature contribution is small. Similarly, gaug-
inos give a very small contribution to the potential which we are neglecting in this work.
We are assuming that stops are heavy and therefore decouple from the plasma, leaving
only a contribution at zero temperature, which, as shown before, is responsible for raising
the SM-like Higgs mass above mZ .

3.3 Electroweak Phase Transition in a Simplified Model

In order to understand the properties of the electroweak phase transition in the NMSSM
close to the PQ symmetry limit, we first analyze a Simplified Model which, as we shall see,
carries all the important features associated with the case under study. Hence, we consider
the NMSSM potential in the PQ limit (κ = 0), taking into account only the dominant
temperature dependent one-loop corrections affecting the Higgs mass parameters, and the
trilinear terms induced by the gauge bosons.

The electroweak symmetry breaking and the phase transition properties are mostly
dependent on the minima of the potential, therefore we shall replace S by its extreme
value as a function of the Higgs boson fields:

S0 =
ãφ2

(m2
s + λ2φ2)

. (3.18)

This leads to the expression [41]

V (φ,ms, T ) = m2
φ(T )φ2 − TEφ3 +

1

2
λ̃φ4 − ã2φ4

(ms
2 + λ2φ2)

, (3.19)

where φ =
√
|Hu|2 + |Hd|2 and ã = λAλ sin(β) cos(β). m2

φ(T ) = m2
φ(0) + cT 2, and c is

determined by the all weak scale particles that couple to the Higgs and contribute to
the finite temperature potential. In order to obtain a SM-like Higgs mass in the range
115–130 GeV, λ̃ ∼ 0.25 while the parameter E proceeds from weak gauge boson effects,
E ∼ 0.02 .

The mass, m2
φ(T ), is the effective Higgs mass parameter including one loop finite
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temperature corrections, and the zero temperature component, m2
φ(0), may be extracted

from the condition of a vanishing first derivative of the Higgs potential at φ = v and
T = 0. The first derivative of the Higgs potential is given by

φ2 ∂V

∂φ2
= m2

φ(T )φ2 − 3

2
TEφ3 + λ̃φ4 − ã2φ4 (2ms

2 + λ2φ2)

(ms
2 + λ2φ2) 2

. (3.20)

The vanishing of Eq. (3.20), does not ensure that the zero temperature vacuum is a
global minimum. For that to happen, one should ensure that the value of the potential
at the electroweak-symmetry breaking minimum is at least deeper than the trivial one,
namely

V (φ = v,ms, T = 0) = − λ̃v4

2
+

ã2m2
sv

4

(m2
s + λ2v2)2 < 0

=⇒ λ̃− 2 ã2 m2
s

(m2
s + λ2v2)2 > 0 (3.21)

The above inequality gives a quadratic in m2
s, which is fulfilled for negative values

of this mass parameter, while for positive values of m2
s, solutions are obtained when

ms ≡
√
m2
s is in the range

ms


> ã√

2λ̃

(
1 +

√
1− 2λ̃

ã2
λ2v2

)

< ã√
2λ̃

(
1−

√
1− 2λ̃

ã2
λ2v2

) . (3.22)

The critical temperature, Tc, is defined as the one for which the value of the potential
at the non-trivial minimum, φc 6= 0, is degenerate with the one at φ = 0:

∂V (φ,ms, Tc)

∂φ

∣∣∣∣∣
φ=φc

= 0 , V (0,ms, Tc) = V (φc,ms, Tc) . (3.23)

The phase transition strength, which is determined by the ratio of φc/Tc, can be obtained
by setting both Eqs. (3.19) and (3.20) to zero

ETcφ
3
c − λ̃φ4

c +
2 ã2m2

sφ
4
c

(m2
s + λ2φ2

c)
2 = 0. (3.24)

To ensure a strong phase transition as required for electroweak baryogenesis, one should
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Figure 1: F (m2
s) plotted as a function of m2

s with φc = 140 GeV, for Parameter Set 1 in Table I. We
see that it is only possible to have a strong first-order phase transition (F (m2

s) > 0) for two
regions of m2

s. The solution for small m2
s is shown in more detail in the right plot (b).

demand φc/Tc > 1. Hence, a strong first order phase transition is realized if:

φc
Tc

=
E

λ̃− 2 ã2m2
s

(m2
s+λ

2φ2c)
2

> 1 (3.25)

=⇒ F (m2
s) ≡

1

λ̃− 2 ã2m2
s

(m2
s+λ

2φ2c)
2

− 1

E
> 0 . (3.26)

Note the explicit dependence on φc. The values of φc and Tc may be obtained by using
Eq. (3.24) and the temperature dependence of m2

φ(T ), namely

c T 2
c = G(v)−G(φc) +

3φ2
c

2

(
λ̃− 2ã2m2

s

(m2
s + λ2φ2

c)
2

)
, (3.27)

with

G(φ) =

[
λ̃− ã2 (2m2

s + λ2φ2)

(m2
s + λ2φ2)2

]
φ2 . (3.28)

Instead of solving the system, however, we shall concentrate on Eq. (3.26), since it
leads to valuable insight into the range of parameters leading to a strong first order phase
transition. Similarly to Eq. (3.21), Eq. (3.26) leads to a quadratic condition on m2

s:

(λ̃− E)− 2 ã2 m2
s

(m2
s + λ2φ2

c)
2 < 0 , (3.29)

with solutions shifted from those for EWSB, Eq. (3.22), by λ̃→ (λ̃−E) and v → φc and
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Figure 2: Values of φc/Tc as a function of m2
s for Parameter Set 1 in Table I.

with the inequalities reversed:

ms


< ã√

2(λ̃−E)

(
1 +

√
1− 2 (λ̃−E)

ã2
λ2φ2

c

)

> ã√
2(λ̃−E)

(
1−

√
1− 2 (λ̃−E)

ã2
λ2φ2

c

) . (3.30)

However, note that we also need to impose that the denominator in Eq. (3.25) is positive,
as we have implicitly assumed to derive Eq. (3.30). This adds the additional constraint:

λ̃− 2 ã2 m2
s

(m2
s + λ2φ2

c)
2 > 0 . (3.31)

Generally φc tends to be smaller than v, hence, the above condition gives a stronger
constraint than that given by EWSB from Eq. (3.21) for φc < v. Hence, in this Simplified
Model, we see that the only allowed values for small ms are given in the range:

ã√
2(λ̃− E)

1−

√
1− 2(λ̃− E)

ã2
λ2φ2

c

 < ms <
ã√
2λ̃

1−

√
1− 2λ̃

ã2
λ2φ2

c

 .

(3.32)
This behavior is clarified if one looks at the behavior of F (m2

s) for a fixed set of
parameters as plotted in Fig. 1. The region enclosed by the two roots in Eq. (3.30)
should be the region in Fig. 1 where F (m2

s) > 0, however, one clearly sees the two poles
corresponding to the zeros of the function given in Eq. (3.31), between which the function
again becomes negative and hence violates the required condition. The region of large m2

s

corresponds to relatively large values of the singlet mass, which were studied in Ref. [41]
and are not consistent with a very light DM particle. The right-hand side of Fig. 1 shows
the region near the pole and the root corresponding to the region of small m2

s. We clearly
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see that for each value of φc there is only a narrow region of ms that satisfies both the
inequalities given in Eqs. (3.30) and (3.31) and hence is enclosed by the range given in
Eq. (3.32).

The bound on ms derived above has a dependence on φc. Since φc is not independent
of ms, what is generally obtained is a band of values of ms for which the condition of a
strong first order phase transition is satisfied. In Fig. 2 we present the values of φc/Tc
as a funciton of m2

s obtained by solving the system of equations, Eqs. (3.24), (3.27), for
the same set of parameters as in Fig. 1. As the phase transition becomes stronger, the
value of φc increases towards v and the upper bound on m2

s, Eq. (3.32), moves upwards.
As we shall demonstrate in the next section, a similar upper bound to the one appearing
in Eq. (3.32) also appears in the full theory, once the one-loop correction as well as the
small κ induced contributions are taken into account. The behavior of φc/Tc in the full
theory is also similar to the one depicted in Fig. 2. Finally, the values of φc/Tc turn
out to be rather insensitive to the precise value of E. A change of E from 0.01 to 0.04
results in a less than ten percent change in φc/Tc, and hence, contrary to the SM case,
the Debye screening of the gauge boson longitudinal modes has very little effect on the
phase transition strength.

For the small m2
s region, S0, Eq. (3.18) (and hence mh1 , Eq. (2.13)), decreases for

increasing values of m2
s. As can be observed in Fig. (2), in this region larger values of

m2
s are associated with larger values of φc/Tc. Hence, we conclude a stronger first order

phase transition is achieved for smaller values of mh1 . Finally, let us stress that since
generically φc <∼ v, large values of φc/Tc � 1, as the ones achieved for the largest values of
m2
s in Fig. 2, may only be obtained for relatively small values of the critical temperature,

of order of a few tens of GeV. We shall return to this question in the next section.

4 Numerical Analysis

In our numerical study, we first performed scarce scans over parameters somewhat beyond
the near PQ symmetry limit, going up to values of λ ' 0.5, κ ' 0.01, λAλ ' 500 GeV
and κAκ ' −0.1 GeV. We selected regions of parameter space for which an electroweak
symmetry breaking minimum, φ = v, with moderate values of tan β, develops at zero
temperature. This corresponds to finding a range of m2

s for a given set of parameters where
all the eigenvalues of the Higgs mass matrix are positive. We then study the temperature
evolution of the associated potential. If the phase transition is first order, we determine
the critical temperature. In general, the values of tan β at the minimum at T = Tc are
slightly different from the ones at zero temperature. Regions where we found a strong first-
order phase transition at finite temperature (Tc < φc), with a global minimum coinciding
with the zero temperature physical minimum, will be referred to as “Baryogenesis”, since
these are the only regions of parameters where the baryon asymmetry may be preserved.

We performed several scans, which were sufficient to identify regions of interest where
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Table I: Examples of parameter sets of values found where a first order phase transition with Tc < φc
takes place. We have fixed the stop spectrum appropriately so that it leads to mh2 '115–
120 GeV.

tan β λ λAλ κ κAκ

Set 1 13 0.10375 250 0.006875 -0.06
Set 2 13 0.10375 250 0.006875 -0.08
Set 3 13 0.10375 350 0.001250 -0.06
Set 4 13 0.10375 350 0.001250 -0.08
Set 5 18 0.10375 350 0.006875 -0.06
Set 6 18 0.10375 350 0.006875 -0.08
Set 7 18 0.10375 450 0.001250 -0.06
Set 8 18 0.10375 450 0.001250 -0.08

a strong first order phase transition takes place:

λ ' 0.100 to 0.130,

κ ' 0.001, to 0.005,

κAκ ' −0.1 to − 0.05,

λAλ ' 250 to 450 GeV,

tan β ' 10 to 20,

mh2 ' 100 to 130 GeV. (4.33)

Observe that we consider values of mh2 smaller than the SM Higgs LEP bound, since,
as we shall discuss in the next section, these values may be allowed in this model due to
the possibility of non-standard decay modes. On the other hand, we only consider mh2 ∼>
100 GeV, since lower values would require lighter stop masses which may be in tension
with direct experimental search for these particles, as well as with precision electroweak
constraints. As emphasized before, in the region of parameters we consider, the stops are
heavy enough to decouple from the plasma at the phase transition temperature.

Table I lists some examples of parameters for baryogenesis found in one of our initial
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Table II: Parameter sets of values found where the potential undergoes a strong first order phase
transition with Tc < φc. We implicitly vary the stop spectrum so that mh2

is scanned over
100 - 130 GeV. We were also able to generate reasonable values for the dark matter density
and the spin-independent direct DM detection cross-section.

tan β λ λAλ κ κAκ

Set a 13 0.125 375 0.0021 -0.055
Set b 13 0.105 350 0.0023 -0.080

sparse scans, where we found solutions only for relatively small values of λ . We show this
example for fixed values of λ since it allows a better comparison with the Simplified Model.
The corresponding relevant masses are presented by red crosses in Fig. 3. The green dots
in this figure represent solutions obtained for EWSB that did not lead to baryogenesis.
Note that Baryogenesis is only achieved for values of the lightest CP-even Higgs mass
below 10 GeV, the CP-odd Higgs mass below 25 GeV and the neutralino mass below 20
GeV.

Performing a more thorough scan around the points in the “Baryogenesis” regions,
Eq. (4.33) we were able to find points where the relic density acquires acceptable values.
Table II lists two of the parameter sets, a and b, for which we were able to find regions
consistent with the observed dark matter density. Most of our detailed analysis will be
focused on these parameter sets. The stop spectrum was varied such that mh2 takes
values in the 100–130 GeV range. The lightest CP-odd Higgs mass remains below 20
GeV, Eq (2.4), and the neutralino mass consistent with the proper relic density tends to
be below 10 GeV, Eq. (2.5).

The masses of the two CP-even Higgs, mh1 and mh2 , corresponding to these parameter
sets are shown in Fig. 4. As can be explicitly seen in these figures, the solutions with
the lowest values of mh1 are associated with the lowest values of mh2 . In particular for a
given small value of mh1 , solutions compatible with EWSB require relatively small values
of mh2 . The reason for this behavior is that otherwise new minima develop making the
electroweak symmetry breaking vacuum metastable. As mentioned before, these addi-
tional minima tend to be associated with very small values of S0 and Hd. The situation is
somewhat complex due to the many parameters involved, however, we can get a qualita-
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tive understanding of it by looking at the effective Higgs doublet mass parameter, given
by

m2
φ ' m2

Hu sin2 β +m2
Hd

cos2 β. (4.34)

Since m2
Hd

is very large, Eq. (2.6), m2
Hu

is smaller than m2
φ. The EWSB physical minimum,

with the required values of tan β, is deeper than the one with S = Hd = 0, due to the
effects induced by the trilinear Higgs coupling through relatively large values of S0 as can
be seen from the Simplified Model, Eqs. (3.18) and (3.19). As m2

s increases, the value of
S0 becomes smaller and for the same value of m2

Hu
, the potential at the physical minimum

takes higher values, eventually higher than the ones at S0 = Hd = 0. Hence, if we wanted
to keep the physical minimum deeper as we raise m2

s one would need to raise the value
of m2

Hu
. Since smaller values of mh1 are associated with smaller values of S0, and smaller

values of mh2 are associated with larger (or less negative) values of m2
Hu

, the stability
condition is more likely to be fulfilled if mh2 is pushed to lower values for small values of
mh1 .

Note also that parameter set a allows for solutions where the mass of the lightest
CP-even Higgs, h1, can be very small, of order 1 GeV and the SM-like Higgs mass, mh2 , is
above the LEP SM-Higgs mass limit. These solutions are very interesting since such small
values of mh1 are associated with large values of the spin-independent direct dark matter
detection cross section [24], as the ones necessary to explain the intriguing signatures at
the DAMA, CoGeNT and CRESST experiments.
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4.1 Comparison with the Simplified Model

In general we observe that a strong first order phase transition may only be obtained
for a small range (band) of m2

s which depends on the parameters of the model. It is
not possible in the full model to write an analytical form for the range as was done in
Eq. (3.32). However, we would like to understand whether our insights from the Simplified
Model are valid in the full model.

To aid us in understanding the behavior of the potential, we compare the values of
m2
s found for baryogenesis in the full numerical simulation with the upper limit given in

Eq. (3.32) for the Simplified Model. Note that we could have compared either of the
limits, since the range of m2

s for a given set of parameters and of φc is only a few GeV.
If the Simplified Model really encodes the m2

s dependence of the phase transition, one
expects to see some correlation between what was found numerically and what we derived
analytically.

This comparison is shown in Fig. 5 for the parameters listed in Table I, where we
present a parametric plot of m2

s, obtained when a first order phase transition to the
physical vacuum is realized, and the upper bound derived in Eq. (3.32). The solutions
present a clear linear correlation between the two variables. Note that the different lines
appearing in Figs. 5 coincide for parameter sets which have the same value of κ and κAκ
(for the same λ), which are the parameters which govern the contributions not included
in the Simplified Model. A similar correlation is observed in Fig. 6, where we now plot
the solutions and the bound corresponding to parameter given in Table II.

Larger values of κ lead to smaller values of m2
s, while larger negative values of κAκ lead

to larger values of m2
s, consistent with the perturbations that these parameters perform

in the S-dependent potential. Therefore, since the perturbations induced by κ and the
loop corrections are small, we see that consistent solutions, with a strong first order phase
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transition and no additional global minima at zero and finite temperature tend to be
obtained close to the upper bound on m2

s derived for the Simplified Model. The values of
φc/Tc obtained in the full model are also in close correspondence with the ones derived in
the Simplified Model, for the associated values of m2

s shown in Fig. 5.

4.2 Phase Transition Strength and the CP-Even Higgs Spectrum

We analyze the dependence of the phase transition strength on the lightest and second
lightest CP-Even Higgs masses. As we discussed before and exemplified in the Simplified
Model, EWSB and baryogenesis maybe achieved in two ranges of the singlet soft susy
breaking parameter, m2

s. We concentrate on the small m2
s region which opens up EWSB

and baroyogenesis solutions for values of the lightest CP-even Higgs mass less than about
10 GeV (see Fig. 3).

Fig. 7 shows the dependence of φc/Tc on m2
s, for both sets a (blue dots) and b (red

triangles), consistent with a strong first order phase transition. We scan the parameter
∆λ̃t̃, so that mh2 varies in the range 100–130 GeV, and the interpolating lines join points
with the same values of mh2 . As shown in Figs. 5 and 6, the behavior in the full model
is similar to the one in the Simplified Model. For a given mh2 , the values of m2

s vary in a
relatively small range. As the value of φc/Tc increases, the critical temperature decreases
smoothly, and m2

s approaches an upper bound showing a behavior similar to what would
be expected in the Simplified Model as can be seen in Fig. 2.

As stressed before, larger values of m2
s correspond to smaller values of S0, which in

turn lead to smaller values of mh1 , Eq. (2.13), in the region of parameters under study.
Fig. 8 shows the dependence of mh1 on m2

s for sets a (blue dots) and b (red triangles) and
the interpolated lines are associated with fixed values of mh2 as in Fig. 7. As anticipated,
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for fixed values of mh2 , Fig. 8 shows the inverse correlation between mh1 and m2
s.

Fig. 9 shows the dependence of φc/Tc on the lightest CP-even Higgs mass, showing
that indeed the lighter the CP-even Higgs boson is, the stronger the phase transition
becomes, leading to very interesting phenomenological properties, which we shall discuss
in more detail in the next section. From Figs.9 and 8 we see that for the same value of
mh1 , the phase transition becomes stronger for larger values of mh2 , which are associated
with larger values of m2

s.
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4.3 Transition Temperature

The tunneling probability per unit time and unit volume from the false (symmetric) to
the real (broken) minimum in a thermal bath is given by [48]

Γ

ν
∼ A(T ) exp

[
−S3(T )

T

]
, (4.35)

where the prefactor is A(T ) ' T 4 and S3 is the three-dimensional effective action. At
high temperature the euclidean action simplifies to:

S3 = 4π

∫ ∞
0

r2dr

[
1

2

(
dφ

dr

)2

+ V (φ, T )

]
(4.36)

where r2 = ~x2. The euclidean equations of motion yield

d2φ

dr2
+

2

r

dφ

dr
= V ′(φ, T ) , (4.37)

for the bounce solution, with boundary conditions limr→∞ φ(r) = 0 and dφ/dr|r=0 = 0.
The nucleation temperature T n is defined as the temperature at which the probability
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for a bubble to be nucleated inside a horizon volume is of order one. Below T n the
transition continues until a temperature T t when the fraction of the causal horizon in the
broken phase is of order one [49, 50].

In Fig. 10 we plot the effective potential for φ for parameter set a with mh1 ' 1.8 GeV
and mh2 ' 115 GeV for a series of different temperatures from zero to the critical tem-
perature. We chose this as an example since as we will show in the next section, such
low values of mh1 are correlated with large spin-independent direct DM detection cross-
sections, as the ones suggested by the CoGeNT and DAMA experiments. Additionally,
as shown in Fig. 9, large values of φc/Tc correspond to the smallest values of mh1 . The
non-trivial minimum, φ0(T ), of the potential is always less than or equal to v and hence
small values of mh1 , for which there is a strong first order phase transition, are associated
with relatively small values of Tc.

The potential in Fig. 10 is plotted along the minimal energy barrier path between
the trivial and nontrivial minima of φ: For each value of φ we found the values of S
and tan β that minimize the potential. This defines a smooth path along Hu, Hd and
S that connects both minima. It is important to stress that the barrier between both
minima slowly disappears as T goes below Tc. The nucleation temperature is always a
few GeV below the critical temperature. Note that the potential is normalized such that
V (Hu = 0, Hd = 0, S = 0) = 0.

For transition temperatures of the order of the weak scale, nucleation occurs when
S3(T n)/T n ∼ 135 continuing until S3(T t)/T t ∼ 110 [49, 50]. Hence, even though for
our particular example the critical temperature is about 31 GeV, the transition does not
end until T t ' 21 GeV (the nucleation temperature is about 22 GeV). As this examples
shows, for small values of mh1 , the phase transition strength, parameterized by φ0(T t)/T t

(or φ0(T n)/T n), may be even larger than what the value of φc/Tc indicates. Such strong
phase transitions make the possible effect of magnetic fields on the sphaleron energy (and
hence on the final baryon asymmetry) [51] much less relevant than in the MSSM.

For values of mh1 larger than the one considered above, the first order phase transition
becomes weaker, and the difference between the critical temperature and the nucleation
temperature becomes smaller. Still, as can be seen in Fig. 9 even for values of mh1 as large
as 5 GeV, the values of φc/Tc >∼ 3 and the phase transition is strong enough to preserve the
baryon asymmetry, even after possible magnetic field effects. On the other hand, small
values of mh1 , leading to φc/Tc >∼ 10, may lead to very small transition temperatures,
below the DM freeze out temperature or the nucleosynthesis temperature. In fact, for
small enough mh1 , there is a possibility of a large barrier even at zero temperature, giving
rise to the situation where there is no transition from the false vacuum. Hence, although
solutions with φc/Tc >∼ 10 may be found, we have not considered such a possibility.

5 Phenomenological Consequences

In general, the phenomenology of the region of parameters under study is very similar to
the one analyzed in Ref. [24]. The presence of light CP-even and CP-odd Higgs bosons
tend to be strongly constrained by the LEP experiment. In particular, the possible
associated production Z → A H has been studied in detail [52]. This production channel
demands A andH to have relevant weak couplings. Near the PQ symmetry limit, however,
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the non-standard MSSM-like CP-even and CP-odd Higgs bosons become very heavy and
the light non-standard CP-even and CP-odd Higgs bosons, h1 and a1, are mostly singlet-
like, leading to a very strong suppression of this production cross section, and therefore to
weak bounds from this channel. In addition, the decays of the SM-like Higgs boson, h2,
to h1h1 and a1a1 pairs are generically suppressed [24]. Thus h1 and a1 are hidden from
four-fermion searches at both LEP [53] and the Tevatron [54] designed to test a light a1

scenario. This also implies that, unless other light particles appear in the spectrum, the
bounds on the SM-like Higgs boson mass are similar to the SM Higgs bounds. However,
as mentioned before, lower SM-like Higgs masses make it easier to find stable solutions
with small values of mh1 as shown in Fig. 4. Hence, in our work we also considered values
of mh2 below the LEP SM-Higgs limits that could be avoided if additional non-standard
decays were present.

In this model, additional decay modes of the SM-like Higgs boson may appear, for
instance, for low values of the bino mass. In such a case the SM-like Higgs boson may
decay in the following way [55]

h2 → χ2χ1 → h1χ1χ1 (ff̄ + Miss.Energy) , (5.38)

or, for sufficiently low values of mχ2 ,

h2 → χ2χ2 → h1h1χ1χ1 (2× ff̄ + Miss.Energy) . (5.39)

This leads to a decay into missing energy and somewhat soft jets or leptons, for which the
limits on the SM-like Higgs may be relaxed [56]. Specifically, bounds on the SM-like Higgs
mass coming from the search of Higgs bosons decaying into bottom quark pairs may be
lowered if the branching ratio of its decay into bottom quarks is about 20 % or smaller [57].
A specific analysis of LEP data for the decay channels described in Eqs. (5.38) and (5.39)
is not available, and should be performed to determine the viability of this region of
parameter space.

We used NMSSMTools [58] to verify our zero temperature results. For the same
parameter values we used, this program requires somewhat different value of µ (S0) due to
a slightly different treatment of the zero temperature radiative corrections to the effective
potential. For the same value of the mh1 mass, however, the rest of the spectrum was at
most 10% away from the values we obtained. We verified that the branching fraction into
bottom quarks may be lowered to ∼ 20% if, for example, the hypercharge gaugino mass is
of the order 40–50 GeV. Hence, values of mh2 ' 100 GeV become consistent with the LEP
bound on the H → bb̄ channel. Additionally, we checked that all other phenomenological
constraints were fulfilled, including all rare B-decay constraints. The only exception was
the relic density, which is very sensitive to the exact spectrum due to its dependence on
near-resonant annihilation, as we shall discuss in detail below.

It is worth mentioning that the non-standard decay channels can also occur for SM-like
Higgs masses larger than the LEP bound. Their main effect is to decrease the branching
ratio of the SM-like Higgs boson into standard model particles, including the decays into
photons, bottom quarks and W bosons, which constitute the main search channels for
a light SM-like Higgs at the LHC and the Tevatron. Therefore, the possibility of extra
decay modes will be tested at these colliders, as they also expand the Higgs searches to
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masses below the LEP bounds on the SM Higgs mass.
The spin independent direct dark matter detection cross section is approximately given

by [24]

σSI ≈

((
ε

0.04

)
+ 0.46

(
λ

0.1

) (
v
µ

))2 (yh1χ1χ1
0.003

)2
10−40cm2( mh1

1GeV

)4 , (5.40)

where the h1χ1χ1 coupling is yh1χ1χ1 ≈ −
√

2κ for a singlino-like χ1 and a singlet-like h1.
The Higgsino mass parameter µ is of the order 185 GeV for set a and 215 GeV for set b.

The spin independent direct dark matter detection cross section increases with the
fourth power of m−1

h1
. Additionally, as we showed in the previous section, small values

of mh1 tend to be associated with a strong first order phase transition. These two ob-
servations lead us to note an interesting correlation between a large spin independent
direct detection dark matter cross section and a strong first order phase transition. This
is shown in Fig. 11.

As shown in the previous section, very small values of mh1 in sets a and b are obtained
for values of mh2 close to the LEP SM Higgs bound. For parameter set a, as shown
in Fig. 12, values of the spin independent direct dark matter detection cross section as
large as the ones consistent with potential DM signatures observed by CoGeNT and
DAMA [11, 12] may be obtained for values of mh2

<∼ 120 GeV. Instead, for the parameter
set b, as seen in Fig. 13, the direct detection cross section tends to be an order of magnitude
smaller than for Set a and only approaches values necessary to explain these signatures
when mh2 ∼ 100 GeV. For completeness in Fig. 14 we show the neturalino mass vs. the
spin independent cross-section for parameter sets a and b. In Figs. 12–mchi1sigab, we
denote with red crosses the points consistent with Baryogenesis and with green dots those
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that allow for EWSB but would not lead to the preservation of the baryon asymmetry at
the electroweak phase transition.

Regarding the Dark Matter relic density, in the region under study it is obtained by
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close to resonance annihilation at finite temperature via a light CP-odd Higgs boson [24],

Ωh2 ≈
0.1
( ma1

15GeV

) ( Γa1
10−5GeV

) (
µ
v

)2
(

0.003
ya1χ1χ1

)2 (
0.1
λ

)2

erfc
(

2mχ1
ma1

√
xf |1−m2

a1
/(4m2

χ1
)|
)
/erfc (2.2)

(5.41)

where xf = mχ1/Tf is the freeze-out point, Γa1 is the width of a1 and ya1χ1χ1 '
√

2κ.
Since at zero temperature the annihilation cross section is off-resonance (mχ1 ∼ 6.5 GeV
and ma1 ∼ 15.5 GeV for set a and mχ1 ∼ 9.5 GeV and ma1 ∼ 22 GeV for set b), at
current times it is much smaller than 10−36 cm2, and hence the bounds coming from the
modification of the antiproton and gamma ray fluxes [59] become very weak in this model.

Finally, Fig. 15 shows the correlation of the spin independent cross section with the
obtained Dark Matter relic density for both sets a and b. Observe that in the parameter
sets a and b the relic density is slightly above the measured value. We have not attempted
to tune these values, but given that the relic density is obtained from a resonant condition a
small variation of the parameters would adjust its value to the observed one. For instance,
a small increase of κ by less than one percent would be enough to bring the relic density
to agreement with observations, without modifying any other relevant phenomenological
property.
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6 Conclusions

In this article we have examined the electroweak phase transition in the NMSSM close
to the PQ symmetry limit. This model is characterized by a spectrum of light CP-even
and CP-odd Higgs particles, as well as a light neutralino. In general, h1 masses below
10 GeV, and light CP-odd Higgs bosons and neutralino masses below 25 GeV are obtained
in the region consistent with a strong first order phase transition. This leads to interesting
phenomenological consequences for collider and direct dark matter detection experiments.

Although the neutralinos are predominantly singlinos, an experimentally consistent
relic density may be obtained if the neutralinos annihilate resonantly via the interchange
of the light scalars. Additionally, the light CP-even scalars may lead to a large direct dark
matter detection cross section, consistent with the recent observations at the CoGeNT,
DAMA (and CRESST) experiments.

It is of interest to study if this model can also lead to the generation of the baryon
asymmetry at the electroweak scale. For this purpose, we studied the electroweak phase
transition properties. We found that the electroweak phase transition tends to be first
order and its strength is enhanced for small values of the lightest CP-even Higgs mass,
establishing a correlation between the strength of the first order phase transition and the
size of the direct dark matter detection cross section.

In our numerical study we found regions of parameter space where a strong first order
phase transition occurs yielding the proper relic density. The lightest neutralino mass is in
the 6–10 GeV range and the lightest Higgs mass, mh1 , is below a few GeV, thus enhancing
the cross section to values close to the ones required for an explanation of the CoGeNT
and DAMA experimental data. The mass of the SM-like Higgs boson, mh2 , is in the
low mass window compatible with LEP and Tevatron/LHC data. There are also regions
of space in which the SM-like Higgs mass is slightly below the LEP SM Higgs bound.
However, this bound may be avoided due to non-standard Higgs decays into neutralinos.
We expect that a more computationally intensive scan would slightly enlarge the LSP
mass window consistent with a strong first order phase transition and a large direct DM
detection cross-section.
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